
VIC SOFTWARE SPRITE STACK

MMX Edition

for COMMODORE VIC 20

written by Robert Hurst

Rev. 20-Nov-2010

Table of Contents

Foreword..2
Objective..2
Disclaimer..2
Theory of Operation................................3

Prerequisites.......................................4
Primer..4
Compiling...5
Linking...5
Sprite definitions................................6
Sprite pixel coordinate system............8

API...9
SSSINIT..9
SSSIRQ...10
SSSCLEAR..11
SSSCREATE.....................................11
SSSUSE..11
SSSANIM..11
SSSMOVEXY....................................11
SSSTOUCH.......................................12
SSSREFRESH...................................12
SSSFLIP / SSSFFLIP........................12
SSSCELL..12
SSSPLOT..13
SSSPLOTS..13
SSSPEEK..13
SSSPEEKS..13

SSSPEEKXY.....................................14
SSSPOKE...14
SSSPRINT...14
SSSPRINTS.......................................14
SSSREAD...14
SSSWRITE..15

Other Considerations...........................16
Fixed binaries...................................16
VIC screen geometry.........................16
Optimization.....................................16
Sprite Ordering.................................16

VIC Memory Map..................................17
VIC zero page....................................17
VIC addresses...................................17
VIC registers.....................................17

Software Sprite Stack Memory Map......18
SSS zero page...................................18
SSS addresses..................................18
SSS registers....................................18

VIC-SSS Run-Time Memory Map..........20
Run-Time heap.................................20
Run-Time free...................................20
Run-Time program code...................20

Resources...21
Author..21
Online...21

Page 1

Foreword

I have found that programming for an 8-bit computer is a very challenging, yet personally
rewarding, experience. When showcasing your effort, you may hear from users (and even other
programmers) phrases that start with, “why can't it do …” and “if only it could …”. When
confronted by those demands, try to keep in mind that it is exactly those attitudes and
expectations from the humble beginnings of this “Wonder Computer of the 1980s” that pushed
and advanced video game programming into what it has become today.

So given the advancement in computing power, storage, and graphic processing, why even
bother writing for an 8-bit machine today? The truth behind that answer lies only within its
author. Discover, solve, and enjoy!

Objective

Nothing can replace a tightly-written machine language routine to implement a specific
graphic animation technique. But all techniques involve a common set of requirements,
and thus generalizing it into a solid working set of subroutines can be constructed well

enough to free the game programmer of those bit-twiddling tasks. As a result of this
generalization, some trade-offs may be accounted for its slightly larger memory footprint to
balance between programmer-friendliness and performance.

Thus, VIC-SSS provides a programmer-friendly API to manage your game's playfield with
software-rendered sprites and other animations for a flicker-free video experience. On-the-fly
custom character manipulations with dual video buffers accomplish these goals, avoiding the
alternative of dedicating all internal RAM for a smaller, but fully, bit-mapped screen. This API
supports both NTSC and PAL VIC 20 computers, and allows for display modes that change VIC's
22x23 screen layout.

Disclaimer

The software sprite stack promotes a flicker-free video experience, with the option by the game
programmer to govern frame buffer flips with screen raster timing. While the VIC 20 computer
and its graphics are primitive to begin with, this API was created to strike a balance between
machine and programmer friendliness – which is what the VIC is all about. The result of that
friendliness makes the code size around 2 kilobytes and requires nearly all of the internal 4
kilobytes of RAM for graphics display and management. Thus, your game program will require
some form of memory expansion – all examples provided will run on 8k expansion.

But if you find VIC to be too restricting for your creativity, it might be better to implement your
game ideas on a more advanced 8-bit platform, such as Commodore 64's VIC-II – which was
designed specifically for home video games. Or, use a modern API for cross-platform
development on PCs, such as that found in the SDL project.

The point being is in order to have any success, keep your project fun and enjoy the challenge of
making it happen within the scope and humble workings of the Commodore VIC 20 home
computer... and you will gain better appreciation of what 1980s arcade gaming was all about.

Page 2

Theory of Operation

First, welcome to the fascinating world of VIC graphics and animation. Before you can
get creative and implement VIC-SSS within a game, you must understand how all this
stuff works, and what you can expect from it.

VIC Software Sprite Stack is an application program interface, specifically to
manage the play field of a video game or some graphic animation need (like a mouse pointer).
The play field (see PLAYFIELD variable) is where the base display information lives, such as
alpha-numeric characters, VIC graphic characters, and any custom characters you may define.
The play field also has its own corresponding color space (see PLAYCOLOR variable) for each
character cell. Reading and writing to this play field is done by simple subroutines, equivalent
to BASIC PEEK and POKE statements. For both performance and flicker-free purposes, writes to
the play field are tracked by an internal system of dirty bits, which queues up all pending
changes into one batch operation later that commits them to a video frame buffer (see PENDING
variable). This video buffer allows changes to character and color address space that will
become visible to the player when the appropriate VIC control register is re-directed to use it.

In addition to the play field are the software sprites. These objects have a structure that
defines their image, size, color, and position to place them on top of the play field. Unlike
regular VIC characters, a software sprite can be defined to “float” across character cells.

For that to occur, an extended sprite pixel coordinate system is in place to target that finer
degree of resolution – as opposed to the simpler cursor plots to a 23-row by 22-column character
display. The remaining focus of this document will detail that use of managing software sprites.

After setting up your play field and updating sprite registers, your program must inform
VIC-SSS to have all that new information activated. This is managed by a screen flip
operation (see SSSFLIP), which makes the prior changes visible on the VIC display, by a
series of write-commit operations to the frame buffers. And all this prep work is for just
one screen update! After each flip operation, your program loop will continue by building out
the next frame, make a video frame flip, and so on, and so on.

This MMX (2010) edition not only allows for sprites to float across character cells on the play
field, but they can now also move behind them. For that to occur, this API adds another kind of
write to the play field that sets a flag in that cell to make it static – these static cells forces the
sprite rendering to not overwrite them. Additionally, these static cells can have a different
character code, and even color, per frame buffer. The result of that allows for animations to
occur simply from a screen flip.

Having a lot of animated software sprites floating around can really eat up the
microprocessor and slow the game's action down to an unbearable crawl. While a lot of
effort has been put into speed optimizations, there is no escaping those mathematics. To

assist the game programmer in a friendly way, SSSFLIP has an extended fast version, which
detects if too many screen refreshes are occurring between game loops – thus allowing for an
automatic “frame skip” to make up for the slowed action.

Lastly, a feature for allowing repeating sprites has been added. If your game allows for multiple
sprite images that can be rendered only once, then this bit-flag is for you. SPRITE INVADERS
is a fine example of this new feature.

Page 3

Prerequisites
Access to and operational knowledge of a real VIC 20, or substituted with
the use of machine emulation, such as that provided nicely by VICE Team
or MESS project.

You should already know how to write and debug in 6502 assembly
language, or even better, native machine code. It is even quite possible to

invoke this API using BASIC SYS statements, although the overall speed
will be hampered by your BASIC program's main loop.

This API was written in assembly language, with its source code and configuration files
made specifically for use with the CC65 assembler and linker utilities. If a different assembly
process is sought, these source files can be modified to meet your choice of tools.

You should also possess the fundamentals of VIC graphics – its control registers and what it
means to make custom graphic characters. There is already plenty of written material, tutorials,
and software tools with examples to explain all of that. And, there is still a modest user
community following to assist in any particular detail that may escape you. Like the friendly
computer VIC 20, its users are just as friendly!

Please see the resources section for online links.

Primer
To assist in getting you started more quickly, there is a primer folder with assembler
sources and a linker configuration file. There is a README.TXT file in there with
quick instructions on how to get started. The folder comes with a copy of Windows
32-bit binaries of the cc65 project's assembler, ca65.exe, and linker, ld65.exe , as
well as the pertinent documentation for those two tools. There is also a Windows batch file and
Linux script to compile and link the assembler source files into a VIC binary, which can be
loaded as any ordinary BASIC program. You only need copy this folder to get started.

The primer folder was designed to get the VIC game programmer started quickly in a successful
direction. You may decide later in your project that more memory is required. Or you want the
game to reside in the VIC's ROM cartridge slot ($A000). Or you want to use multi-loading and
place the SPRITE routine and data into the 3k address space to free up more contiguous space
for your game. Whatever your requirements are, it is achievable by making changes to the
segment directives in your assembler source files as well as your project's linker configuration
file.

Complete details of the assembler and linker are included in the docs folder.

Page 4

Compiling
Since VIC-SSS is composed of tiny source, header, and object files, it is acceptable to simply
copy them into your game's project folder. If you are a purist and want to reference VIC-SSS as
a single copy, there are equivalent command-line options to include that path as well. I have
found the pre-compiled Microsoft Windows binaries to work just fine using WINE under Linux,
so these instructions work for both host environments:

$ ca65.exe --cpu 6502 --listing --include-dir . yourgame.s

When ca65 executes, it will find this required compiler directive (entered as part of yourgame.s
source file), which instructs it to use the header file, VIC-SSS-MMX.h , inside the current
directory:

.include “VIC-SSS-MMX.h”

If there are no errors, the assembler will produce both an object file (yourgame.o) and a source
listing file (yourgame.lst).

Please refer to CC65 documentation for complete details on its assembler tool, ca65.

Linking
After running the assembler against your program's source code, it is time to link its object file
with the VIC software sprite stack: VIC-SSS-MMX.o . There is a pre-made linker configuration
file to use, with the beauty of using an assembler is that you are not limited to using just one.
You are free to make your own startup and/or linker configuration, particularly if your program
requires a different memory address layout, i.e., +3k, +16k, or +24k memory expansions.

There are sample assembler source files to make a VIC program file, which is loaded after
starting a VIC 20 (with at least 8k memory expansion) in BASIC mode. Its BOOT and STARTUP
segments are compiled in basic.o , and must be used with the corresponding linker
configuration file, basic-8k.cfg.

$ ld65.exe -C basic+8k.cfg -Ln yourgame.sym -m yourgame.map \
-o yourgame.prg basic.o yourgame.o VIC-SSS-MMX.o

$ mess vic20 -ramsize 16k -quik yourgame.prg

$ xvic -memory 8k -autostart yourgame.prg

When linking is successful, it not only creates a VIC binary file, but also useful symbol and map
files. The symbol file can be loaded inside VICE's monitor to allow for setting program
breakpoints, watching load/store to memory addresses, and inspection of values using the same
global symbols from the assembler source. This makes debugging much easier to do.

The contents of this map file details many useful things, among which is the consumed address
space that each segment uses. From the demos folder, here is bigdude.map :

Page 5

Segment list:

Name Start End Size

--

BOOT 0011FF 00120C 00000E

SSSBUF 001800 001B1F 000320

STARTUP 002000 002031 000032

CODE 002032 002166 000135

SPRITE 002167 002912 0007AC

RODATA 002913 00297E 00006C

With an 8k memory expander, we can see that there is still free space available from $297F -
$3FFF. Free bytes for more program code, more graphics – oh joy!! What is not listed here is
the MYCHAR segment, because no other custom characters were provided for this demo. If a
fixed set of custom characters are desired, simply add the segment data in the section marked in
basic.s, and it will be included in the binary.

Please refer to CC65 documentation for complete details on its linker tool, ld65.

Sprite definitions
The SPRITES register controls how many sprites are active. It gets incremented whenever you
call SSSCREATE . The maximum number (in theory) is 64. It is likely not to exceed 16 discrete
sprites, but repeating sprites allow for many more without the performance hit. You should
modify the VIC-SSS-MMX.h file to reflect your game's need in SPRITEMAX .

While the included basic.s file makes use of SPRITEMAX to reserve the appropriate amount
of bytes for its registers, you are also free to modify the bytes used to maintain each sprite
image, before it gets merged into the custom character space. If your game requires less than
the maximum 64 * 2 (128) custom characters to display all its active sprites, go to the segment
SSSBUF and shrink the reserved character count.

SPRITEIMGL/H contains the address pointer to each sprite's source bit-mapped image.

SPRITEBUFL/H contains the address pointer to each sprite's image, shifted X/Y as requested
within a character cell matrix.

SPRITEC1L/H and SPRITEC2L/H contains the address pointer to each sprite's custom
character cell matrix, per video buffer.

SPRITEBACK contains the character code each sprite has collided with, as long as collision
detection is enabled AND the sprite overlaps any part of its background.

SPRITECX/CY are the sprite coordinates for each sprite that has collision detection enabled
AND the sprite overlaps any part of its background. See also SPRITEDEF and SPRITEZ.

SPRITECOL contains the 4-bit VIC color code:

• bit 3 ($08) claims whether this sprite is either 0 = hi-res color, or 1 = multi-color mode

• bits 0-2 ($00 - $07) is this sprite's character color

SPRITEDEF contains a bit field that defines the following characteristics for that sprite:

• bit 7 ($80) enables or disables this sprite from rendering and displaying.

Page 6

• bit 6 ($40) enables or disables collision detection. See also SPRITEZ.

• bit 5 ($20) enables (XOR) or disables (OR) sprite image operator with any background
pixels. See also SPRITEDEF5 .

• bit 4 ($10) determines if this is a repeating sprite (another copy of the previous sprite
rendered, but with its own X/Y and color attributes), or an independent sprite.

• bit 3 ($08) claims whether this sprite is either 0 = horizontally fixed, or 1 = floats
horizontally

• bit 2 ($04) claims whether this sprite is either 0 = vertically fixed, or 1 = floats vertically

• bit 1 ($02) claims whether this sprite is either 0 = 8-pixels wide, or 1 = 16-pixels wide

• bit 0 ($01) claims whether this sprite is either 0 = 8-pixels high, or 1 = 16-pixels high

SPRITEH contains the value of the number of pixel rows used by this sprite image. It must
contain a value >0 and <= the sprite's height (8 or 16) as defined in SPRITEDEF .

SPRITEX and SPRITEY contain their respective ordinate position relative to the sprite pixel
coordinate system. This is the only register you might want to reference within your game. Use
SSSMOVEXY to change their values.

SPRITEZ contains a bit field used by the sprite rendering process in SSSUPDATE . Of particular
interest is bit 3, which will get set if SPRITEDEF bit 6 is enabled AND the sprite image overlaps
any part of its background. See also SPRITEBACK , SPRITECX , and SPRITECY.

NOTE: The index register, sssNUM , is maintained to point to the current set of sprite registers.

Page 7

Sprite pixel coordinate system
A sprite is placed on a virtual playing field that is 32-pixels higher and wider than the VIC's
current screen resolution. This extra 16-pixels above the top, below the bottom, and outside the
left and right borders allow for a sprite to “enter” or “exit” the visible playing field, with
appropriate image clipping. Thus, 16 ($10) is the first visible pixel for either ordinate, and any
value less than 16 would “clip” the sprite by the VIC screen's border. And there are two
computed symbols, SSSCLIPX and SSSCLIPY, which contain the ordinate value of the first
pixel that lies outside the opposite borders.

It is ultimately up to the programmer to manage these boundaries within the game, because the
software sprite rendering process will not update the display for any sprite that has a value that
would place it completely outside the virtual playing field. Below is a sample graph for your
typical 23-row and 22-column VIC display. Sprite pixel coordinates are depicted as (X,Y)
values:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(0,0) (8,0) (192,0)

(0,8) (8,8) 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 (192,8)

1 16

S
S
S
C
L
I
P
X

2 24

3 32

4 40

5 48

6 56

7 64

8 72

9 80

10 88

11 96

12 104

13 112

14 120

15 128

16 136

17 144

18 152

19 160

20 168

21 176

22 184

23 192

(0,200) (8,200) SSSCLIPY (192,200)

Page 8

API

SSSINIT
This should be the first subroutine called to initialize both VIC and SSS registers for
managing the PLAYFIELD/PLAYCOLOR , VICFRAME1/VICCOLOR1 , and
VICFRAME2/VICCOLOR2 frame buffers. The VIC control registers are read to setup

PLAYROWS and PLAYCOLS, which in turn compute the borders for sprite image clipping in
SSSCLIPX and SSSCLIPY. The VIC control registers are modified to point to an ACTIVE frame
buffer, with PENDING set to point to the other frame buffer on the next flip.

SSSNULL is the character code to fill the video frame buffers; a typical value would be a SPACE
($A0), which points to VIC ROM character set. This value also has rendering optimization
implications if a sprite occupies an “empty” background.

The VIC 4-bit value stored in COLORCODE is used to fill the frame buffers default color.

Use the following table to determine your program requirements. Multiply each cell requirement
by the number of sprites that could potentially be active on-screen at the same time:

Floats X x Y Row x Col
SPRITEDEF X / Y W x H Matrix Cells

%0000 no / no 8 x 8 1 x 1 1 ← great for missiles
%0001 no / no 8 x 16 2 x 1 2
%0010 no / no 16 x 8 1 x 2 2
%0011 no / no 16 x 16 2 x 2 4

%0100 no / yes 8 x 8 2 x 1 2
%0101 no / yes 8 x 16 3 x 1 3 ← up/down tall sprite
%0110 no / yes 16 x 8 2 x 2 4
%0111 no / yes 16 x16 3 x 2 6

%1000 yes / no 8 x 8 1 x 2 2
%1001 yes / no 8 x 16 2 x 2 4
%1010 yes / no 16 x 8 1 x 3 3 ← left/right wide sprite
%1011 yes / no 16 x 16 2 x 3 6

%1100 yes / yes 8 x 8 2 x 2 4 ← most “common” format
%1101 yes / yes 8 x 16 3 x 2 6
%1110 yes / yes 16 x 8 2 x 3 6
%1111 yes / yes 16 x 16 3 x 3 9 ← big dude

While H in the table represents the maximum sprite height, the actual required height value is
governed by SPRITEH.

Note that the character cell matrix is organized by columns, then by rows, i.e., an 8x8 sprite
image allowed to float in both X and Y directions is rendered in a 2 x 2 character cell matrix and
might be displayed as (only for example):

@B
AC

Page 9

Note that you can define a set of VIC custom characters in conjunction with sprite allocations.
Start their definition using “@”, “A”, “B”, “C”, ... as many as your game requires, but as long as
those custom characters are BEFORE the active sprite pool. The sprite pool is allocated starting
from the TOP of that VIC custom character address space within $1C00 – 1FFF, and works its
way backward for each new sprite creation. In addition to these 128 custom characters, all 128
VIC ROM characters are available by using their reverse attribute (+$80).

SSSIRQ
Do not call this routine directly and this IRQ handler must not be invoked before SSSINIT,
because unpredictable results can occur from uninitialized variables. This routine may be setup
to directly intercept the IRQ software event, such as:

SEI

LDX #<SSSIRQ

LDY #>SSSIRQ

STX $0314

STY $0315

CLI

If you have your own custom IRQ handler, simply put a JMP SSSIRQ at the end of your handler
as SSSIRQ does the standard JMP $EABF at its conclusion.

Only with SSSIRQ in place can the SSSFLIP routine be instructed to wait for the VIC to
complete a screen refresh cycle (or more) – this is when it modifies its control registers to
swap out the ACTIVE frame buffer with the PENDING one. Not only does double-buffering allow
for flicker-free animation, but also timing it with the vertical sync allows for tear-free graphics.

The trade-off for this pleasant video effect is that your program's main loop will be governed by
this vertical sync. But this has the positive effect of maintaining a consistent pace, especially if
a varying mix of action occurs within the game (multiple volleys, multiple explosions, large
enemy ships, etc.) So, if the program and software sprite rendering takes more than 1/60th

(NTSC) or 1/50th (PAL) of a second to complete an iteration, the video frame rate (or Frames-Per-
Second) will reduce and game play will wait to synchronize with the next hardware video refresh:

NTSC FPS PAL FPS

1 60 1 50

2 30 2 25

3 20 3 16.7

4 15 4 12.5

5 12 5 10

6 10 6 8.2

Page 10

Invoking this feature is always at the option by the programmer. For example, a special
animation scene may want to implement vertical sync pacing, but the main game loop requires a
faster arcade-style of play. For arcade-style games, you might find this feature to be an easy
way to implement two skill level options, such as a “teddy bear” level that enables vertical sync
timing (slower), or a “normal” level that runs as fast as the machine/program allows.

If the vertical sync option is to be used anywhere within the game, it is first required to
synchronize VIC's IRQ software timer with its vertical refresh (NTSC or PAL). This initial
synchronization process is provided in the STARTUP segment within basic.s . The startup
routine inspects the machine's kernal for the correct video timing, NTSC or PAL, that the VIC
was made for.

SSSCLEAR
Clear the PLAYFIELD and PLAYCOLOR frame buffer.

Pass Accumulator with the character code to fill the video frame buffers; a typical value would
be a SPACE ($A0), which points to the ROM character set. The value stored in COLORCODE will
be used to fill the color space.

SSSCREATE
Create a new sprite on the stack.

Pass Accumulator with the coded SPRITEDEF value. Even though SPRITEDEF contains the
sprite's maximum height of 8 or 16, you must pass Y with the sprite's image height.

When successful, the X index register is returned with the sprite number in sssNUM.

SSSUSE
Make this sprite's registers the current working set.

Pass X index register with the sprite number you want to manipulate.

A few working sprite registers are initialized, notably sssNUM , which returns back in the X index
register.

SSSANIM
Load the address pointer to a sprite image into the current sprite, sssNUM.

Pass X,Y as the source to the sprite image.

Pass Accumulator with the sprite's color code to use.

SSSMOVEXY
Move the current sprite, sssNUM, to these absolute coordinates.

Pass X,Y with new sprite pixel coordinates to use.

Page 11

SSSTOUCH
This routine touches a sprite to force it to re-render on the next flip operation. It gets called as
part of SSSANIM and SSSMOVEXY .

SSSREFRESH
This routine touches all sprites to force them to re-render on the next flip operation. While this
is convenient in circumstances when there is a lot of direct manipulation of sprite registers, it
bypasses the efficiency programmed into SSSUPDATE and may degrade performance.

SSSFLIP / SSSFFLIP
Make the PENDING frame buffer ACTIVE .

Pass Y index register with the number of screen refreshes to wait up to. A typical value of zero
means “no wait” for best performance, but that also means some visible tearing may be
observed.

A value of 1 means to wait for VIC's next screen refresh (or an infinite loop if SSSIRQ is not
enabled). This will eliminate visible tearing, as the routine will wait until VIC is done drawing
the current frame. However, if this value is too low, you may observe varying speeds with your
graphic animations. If that occurs, it is the result of your game loop – plus any software sprite
updates – taking too long to consistently make it in time for the next frame redraw. If
eliminating video-tearing is desired, then keep increasing this value until the animations can
run within tolerable range of the video refresh timing.

Your game may have a variable amount of active sprites visible on the screen, which can lead to
wider variances occurring during screen update timings. Those periods of slow performance can
really detract from the arcade-style gaming experience.

To help keep the pace of the game at a higher rate, there is an extension to this video
flip call that can be used: SSSFFLIP (fast flip). What this does is determine if the
time for the last video flip took longer (+2 frames) than the passed Y value. So if too
many screen refreshes passed before the frame buffers were swapped, then the next
SSSFFLIP call is immediately returned – skipping all of the frame buffer updates for that
iteration. This essentially makes your game loop execute TWICE per screen update, resulting in
a frame “skip”, until the game's animation and action allows for rendering to occur within the
threshold desired.

SSSCELL
Write to a protected cell on the PENDING frame buffer. These cells are specially marked against
a software sprite from being rendered on top of them. Any such part of a sprite's image is
“clipped” when colliding with these protected cells. See also SSSPLOTS.

Pass X index register with the column number of the character space, counted from zero and up
to, but not including, the value computed in PLAYCOLS .

Pass Y index register with the row number of the screen line, counted from zero and up to, but
not including, the value computed in PLAYROWS.

Pass Accumulator with the character code to write to the PENDING video frame buffer.

The value stored in COLORCODE will be used to color that space.

Page 12

SSSPLOT
Puts the “cursor” to the specified character cell coordinate on the PLAYFIELD and PLAYCOLOR
frame buffer. This updates valuable pointers into the frame buffer for your program to use, and
it sets up calls to SSSPOKE and SSSPRINT.

Pass X index register with the column number of the character space, counted from zero and up
to, but not including, the value computed in PLAYCOLS .

Pass Y index register with the row number of the screen line, counted from zero and up to, but
not including, the value computed in PLAYROWS.

This routine re-uses the same VIC BASIC variables that depicts its screen cursor. This has the
potential of providing compatibility and future value as a BASIC wedge or integration with
another customized video output technology, such as a 40-column display, etc.

Refer to SCRNLINE , COLORLINE , DIRTMAP , CRSRROW, and CRSRCOL.

SSSPLOTS
The same functionality as SSSPLOT, but puts the cursor on the PENDING frame buffer for
reading and writing.

This is used for rendering sprites on the display without affecting the underlying PLAYFIELD
frame buffer. It is also used by SSSCELL for other simple animations, such as:

… placing a colored object on one video frame buffer, but changing its color on the other
video buffer. This produces an interesting flickering effect by the screen flips. An
example is to use a white & yellow diamond for a glowing effect, or a black & yellow
diamond for a dimming effect.

… placing two different objects on each video frame buffer, making for a simple animation
effect. An example is to use the plus (+) and asterisk (*) to make only the cross marks (X)
flicker. Another is to use VIC's graphic characters, such as the circle and ball to make for
a pronounced outline with a flickering colored center.

SSSPEEK
Makes the same call to SSSPLOT, but then reads the PLAYFIELD contents pointed to by
SCRNLINE and COLORLINE and updates CRSRCHAR and CRSRCOLOR , with the former
returned by the Accumulator.

Pass X index register with the column number of the character space, counted from zero and up
to, but not including, the value computed in PLAYCOLS .

Pass Y index register with the row number of the screen line, counted from zero and up to,
but not including, the value computed in PLAYROWS.

SSSPEEKS
The same call requirements and functionality as SSSPEEK, but then reads the cursor position
from the PENDING frame buffer, instead of PLAYFIELD .

Page 13

SSSPEEKXY
Similar to functionality as SSSPEEK, but it uses the software sprite pixel coordinate system
instead of the cursor position.

Pass X index register with the pixel column number on the sprite playing field, counted from
zero and up to, but not including, the value computed in SSSCLIPX plus 16.

Pass Y index register with the pixel row number of the sprite playing field line, counted from zero
and up to, but not including, the value computed in SSSCLIPY plus 16.

SSSPOKE
This call writes to the PLAYFIELD contents pointed to by SCRNLINE and COLORLINE . The cell
is flagged as dirty to correctly update the PENDING frame buffer during the video flip phase.

Pass Accumulator with the character code to write to PLAYFIELD immediate, and to the video
frame buffers deferred.

The value stored in COLORCODE will be used to color that space.

SSSPRINT
The same call and functionality as SSSPOKE, but the cursor is advanced to the right after
writing its cell – with line wrap taken into account. All registers are preserved upon exit,
allowing the calling program to safely put this inside a loop.

SSSPRINTS
Prints a string of characters following the JSR SSSPRINTS call, until reaching a NULL byte.
CBM color ($F0-$FF) and carriage control ($0D) codes are also interpreted as part of the output.

JSR SSSINIT
JSR SSSPRINTS
.byte $F2 ; red text
.asciiz “HELLO, WORLD!”
LDY #0 ; render immediate
JSR SSSFLIP

SSSREAD
Similar in functionality by calling SSSPEEKXY – SSSPLOTS – SSSPEEK , but this simpler and
faster routine returns the character code from the PENDING frame buffer that is located within
the visible sprite's pixel coordinate system.

Pass X index register with the pixel column number on the sprite playing field, counted from 16
and up to, but not including, the value computed in SSSCLIPX .

Pass Y index register with the pixel row number of the sprite playing field line, counted from 16
and up to, but not including, the value computed in SSSCLIPY .

If either X or Y are not within the visible sprite's pixel coordinate system ($10 – SSSCLIPX/Y),
the return value in the Accumulator defaults to SSSNULL, which is typically assigned a ROM
space character value ($A0), but you are free to redefine.

Page 14

This is used by the software sprite rendering process, but may be useful by the main program.

SSSWRITE
This routine writes the character code to the PENDING frame buffer that is located within the
visible sprite's pixel coordinate system. If X/Y are visible, then it completes the write by calling
SSSPLOTS – SSSPOKE.

Pass X index register with the pixel column number on the sprite's visible playing field, counted
from 16 and up to, but not including, the value computed in SSSCLIPX.

Pass Y index register with the pixel row number of the sprite playing field line, counted from 16
and up to, but not including, the value computed in SSSCLIPY .

This is used by the software sprite rendering process, but may be useful by the main program.

Page 15

Other Considerations

Fixed binaries
A fixed folder is provided with pre-made binaries that may be useful for your game
development. Perhaps you are using BASIC or are already familiar with another 6502 assembler
and would rather just invoke SSS functions with SYS or JSR calls to fixed addresses. Use the
accompanying SYM file for each SSS function address resolution.

FIXED-0400.PRG is for VIC owners or emulators to make use of that 3K RAM expansion space
reserved at $0400 - $0FFF. It has the lead 2-byte address loader contained within its binary, so
it can be easily loaded into the expansion area with: LOAD “FIXED-0400.PRG”,8,1

FIXED-3400.BIN is an example of a binary made for inclusion into an assembler project,
requiring your project to use a compiler directive such as .incbin within it. It can be made
into PRG format by placing a .word $3400 at the top and re-making the binary.

VIC screen geometry
The default VIC screen geometry is 23 rows by 22 columns (506 character cells). If you want a
different sized screen, modify the VIC control registers before calling SSSINIT, so that it can
initialize its variables, PLAYCOLS / PLAYROWS and SSSCLIPX / SSSCLIPY , appropriately. By
default, the maximum row size can be 24 unless appropriate adjustments are made to the
provided sss, DIRTYLINE , and DIRTYLINE2 memory locations.

No facility for expanding or shrinking the visible area is provided. While it is possible to
implement a smaller “window”, these variables are sized to allow sprites to appear
anywhere on the screen. Those boundaries are enforced by program control.

Optimization
If the game allows, try to keep your sprites' coordinates aligned with “8”s. Maze games are a
great example of when sprites can only move in either an X or Y motion within a fixed width floor
area. It is not necessary to change SPRITEDEF to force a “non-floating” attribute, as the sprite
update routine is smart enough to only display those character cells that actually have a portion
of the sprite image rendered within it. So keeping values divisible by 8 on the non-floating
ordinate makes for a smaller sprite cell matrix, and thus less manipulation to the sprite image
overall.

It is better to avoid arbitrary calls to SSSANIM when there is no change in the sprite's
image data. The same goes for SSSMOVEXY when there is no change in that sprite's X/Y
coordinate. Both these calls force the sprite to be rendered fully from the source image

with any background image, when it may not be necessary to do any part of those operations.

Sprite Ordering
When organizing your sprites, keep in mind that the order the sprites are created (SSSCREATE)
is the same order they get processed (SSSFLIP), for rendering and displaying with optional
collision-detection. Thus, the higher the sprite number, the more priority its image, color, and
collision-detection has over any lower-numbered sprites.

Page 16

VIC Memory Map

The following tables are VIC machine memory locations as used by
VIC-SSS. They are maintained to remain compatible with the
internal workings of VIC's Kernal and BASIC. The programmer is
free to relocate these addresses to suit the needs of their
implementation.

VIC zero page

Address Symbol Description

199 $C7 RVSFLAG character reverse flag

204 $CC CURSOR cursor enable (0=flash)

209 $D1 SCRNLINE 2-byte pointer to cursor's screen line

211 $D3 CRSRCOL index pointer to cursor's position on screen line (0-21)

214 $D6 CRSRROW screen row of cursor's position (0-22)

243 $F3 COLORLINE 2-byte pointer to cursor's color line

VIC addresses

Address Symbol Description

646 $0286 COLORCODE current character color to be used when printing text

647 $0287 CRSRCOLOR existing color under the cursor

648 $0288 SCRNPAGE active screen memory page (unexpanded = $1E)

657 $0291 SHIFTMODE switch between graphic/lowercase: 0=allow, 128=locked

658 $0292 SCROLLFLAG auto-scroll down flag

VIC registers

Address Symbol Description

36866 $9002 VIC+$02 bit 7: screen memory +$0200

36869 $9005 VIC+$05 bits 4-7: screen memory $C = $1000, $F = $1C00;

bits 0-3: character table: $0 = ROM, $F = $1C00

37888 $9400 VICCOLOR1 1st color frame buffer

38400 $9600 VICCOLOR2 2nd color frame buffer

Page 17

Software Sprite Stack Memory Map

SSS zero page

Address Symbol Description

1 $01 VECTORBG 2-byte pointer to PLAYFIELD character image (8x8)

217 $59 DIRTYLINE2 24-byte array containing last dirty cell (+1) in that row

177 $BF NEWDIRT all new character cell updates will add these bits into
PLAYCOLOR : 7=VIDEO1; 6=VIDEO2; 5=PLAYFIELD;
4=STATIC

200 $C8 PLAYROWS current screen row length (16-24)

213 $D5 PLAYCOLS current screen line length (16-24)

217 $D9 DIRTYLINE 24-byte array containing first dirty cell in that row

241 $F1 DIRTMAP 2-byte pointer to PLAYCOLOR for dirty-bit updates

247 $F7 VECTORFG 2-byte pointer to SPRITE bit-mapped image

249 $F9 VECTOR1 2-byte pointer (sprite target image – 1st column)

251 $FB VECTOR2 2-byte pointer (sprite target image – 2nd column)

253 $FD VECTOR3 2-byte pointer (sprite target image – 3rd column)

SSS addresses
These memory locations are used throughout the software sprite stack. There are 5 unused but
named registers for the game program's discretion. SSSCLIPX and SSSCLIPY are useful
symbols for the game program as a means of soft-coding any screen boundary checks:

Address Symbol Description

645 $0285 FPS number of VIC video flip operations every 64-jiffies

659 $0293 PENDING next frame to display: VIDEO1 or VIDEO2

660 $0294 ACTUAL video page at VIC startup ($10 or $1E)

661 $0295 VSYNC wait for vertical sync to occur (>1 for multiple syncs)

662 $0296 VSYNC2 number of skipped frames, to maintain timing

663 $0297 VCOUNT current SSSFLIP count (for FPS stat)

664 - $0298 R0 - R4 5 (unused) registers
668 $029C

669 $029D SSSCLIPX pixels to right border: 8 * (PLAYCOLS + 2)

670 $029E SSSCLIPY pixels to bottom border: 8 * (PLAYROWS + 2)

SSS registers
The placement of these registers (each repeats for each sprite up to SPRITEMAX) are ultimately
up to the programmer; this table is for reference purposes and for a 16-sprite (8x8) game:

Page 18

Address Symbol Description

6144 $1800 SSSBUF rendered sprite image buffer (make)

6656 $1A00 SPRITEBACK if collision detection is on, the character code it “touched”

6672 $1A10 SPRITEBUFH hi-byte pointer to image copy in sprite buffer

6688 $1A20 SPRITEBUFL lo-byte pointer to image copy in sprite buffer

6704 $1A30 SPRITEC1H hi-byte pointer to 1st image copy in custom character space

6720 $1A40 SPRITEC1L lo-byte pointer to 1st image copy in custom character space

6736 $1A50 SPRITEC2H hi-byte pointer to 2nd image copy in custom character space

6752 $1A60 SPRITEC2L lo-byte pointer to 2nd image copy in custom character space

6768 $1A70 SPRITECOL 4-bit VIC color code

6784 $1A80 SPRITECX if collision detection is on, X sprite coordinate of “touching”

6800 $1A90 SPRITECY if collision detection is on, Y sprite coordinate of “touching”

6816 $1AA0 SPRITEDEF sprite image definitions:
- bit 0: height (0 = 8px; 1 = 16px)
- bit 1: width (0 = 8px; 1 = 16px)
- bit 2: float Y (0=fixed cell, 1=vertical float)
- bit 3: float X (0=fixed cell, 1=horizontal float)
- bit 4: repeating (0=own, 1=use rendering from previous)
- bit 5: ghost (0=merge image; 1=invert image)
- bit 6: collision (0=ignore; 1=detect)
- bit 7: display (0 = disabled; 1 = enabled)

6832 $1AB0 SPRITEH required: sprite height (1-16)

6848 $1AC0 SPRITEIMGH hi-byte pointer to your bit-mapped image

6864 $1AD0 SPRITEIMGL lo-byte pointer to your bit-mapped image

6880 $1AE0 SPRITEX X pixel coordinate (0-15; visible 16 – 191; 192-255)

6896 $1AF0 SPRITEY Y pixel coordinate (0-15; visible: 16 – 199; 200-255)

6912 $1B00 SPRITEZ sprite rendering flags:
- bit 0: last rendered (0 = SPRITEC1; 1 = SPRITEC2)
- bit 3: sprite collision (1 = true)
- bit 4: sprite image is clipped by a static cell (1 = true)
- bit 5: background is all SSSNULLs (1 = true)
- bit 6: dirty flag – copy/merge into alternate character pool
- bit 7: render flag – copy/shift sprite image into its buffer

Page 19

VIC-SSS Run-Time Memory Map

Run-Time heap
Change these values if you want to use a different screen geometry and/or need to use VIC's
internal memory differently:

Address Constant Description

4096 $1000 VICFRAME1 1st video frame buffer

4608 $1200 VICFRAME2 2nd video frame buffer

5120 $1400 PLAYFIELD background video frame buffer

5632 $1600 PLAYCOLOR background color frame buffer, with dirty map:
- bit 0-2: character color
- bit 3: multi-color mode
- bit 4: static cell – sprites cannot overwrite
- bit 5: update pending video frame buffer
- bit 6: update frame buffers #2 only
- bit 7: update frame buffers #1 only

6144 $1800 SSSBUF sprite image buffers

6656 $1A00 SPRITE* sprite registers

6928 $1B10 sss,sssNUM,... sprite run-time storage for internal variables

Run-Time free
$033C - $03FB (192-bytes) is DATASETTE buffer working storage typically free to use.

$1B80 - $1BFF (128-bytes) with its size varying dependent upon number of sprites in use.

$1C00 - $1FFF is the default custom VIC character space, for your graphics and software sprites.

Run-Time program code
$0400 - $0FFF for VIC machines with the 3kb memory expansion module.

$1000 - $1FFF can be used ONCE until SSSINIT is invoked, i.e., startup splash screen, instructions, etc.

$2000 - $3FFF for 8kb memory expanded VIC games.

$4000 - $5FFF for 16kb memory expanded VIC games.

$6000 - $7FFF for 24kb memory expanded VIC games.

Page 20

Resources

Author
For more details on my personal and professional background, feel free to visit my blog at
http://robert.hurst-ri.us. I can be reached on Facebook and LinkedIn, too.

I maintain a classic computing tribute page with my history, software downloads, and useful
Internet links to other 8-bit related sites at http://robert.hurst-ri.us/retrocomputing

There you can find several other video game projects, in addition to the included Sprite
Invaders, such as Berzerk MMX, Break-Out!, Quikman+, and Omega Fury as working
examples that integrate this software sprite stack.

Online
These have been useful and instrumental web sites to me, without which I would have not had
any fun with these new VIC 20 projects:

6502 C Compiler and Assembler
http://www.cc65.org

Commodore Books
http://www.bombjack.org/commodore/books.htm

Denial: The Commodore VIC 20 Community
http://www.sleepingelephant.com/denial

MAME Debugger Help [M.E.S.S.]
http://mess.redump.net/debugger

SDLMESS: SDL port for Multiple Emulator Super System
http://rbelmont.mameworld.info/?page_id=163

The VICE Team
http://www.viceteam.org

Any technology distinguishable from magic is insufficiently advanced.

Page 21

http://robert.hurst-ri.us/
http://www.mega-cart.com/
http://www.viceteam.org/
http://rbelmont.mameworld.info/?page_id=163
http://mess.redump.net/debugger
http://www.sleepingelephant.com/denial
http://www.bombjack.org/commodore/books.htm
http://www.cc65.org/
http://robert.hurst-ri.us/retrocomputing

	Foreword
	Objective
	Disclaimer
	Theory of Operation
	Prerequisites
	Primer
	Compiling
	Linking
	Sprite definitions
	Sprite pixel coordinate system

	API
	SSSINIT
	SSSIRQ
	SSSCLEAR
	SSSCREATE
	SSSUSE
	SSSANIM
	SSSMOVEXY
	SSSTOUCH
	SSSREFRESH
	SSSFLIP / SSSFFLIP
	SSSCELL
	SSSPLOT
	SSSPLOTS
	SSSPEEK
	SSSPEEKS
	SSSPEEKXY
	SSSPOKE
	SSSPRINT
	SSSPRINTS
	SSSREAD
	SSSWRITE

	Other Considerations
	Fixed binaries
	VIC screen geometry
	Optimization
	Sprite Ordering

	VIC Memory Map
	VIC zero page
	VIC addresses
	VIC registers

	Software Sprite Stack Memory Map
	SSS zero page
	SSS addresses
	SSS registers

	VIC-SSS Run-Time Memory Map
	Run-Time heap
	Run-Time free
	Run-Time program code

	Resources
	Author
	Online

