
VICScript User Manual v0.3

VICScript v0.3
User Manual

Copyright Bobbi Webber-Manners 2016, 2017
bobbi.manners@gmail.com

Free Software licenced under the GNU Public Licence (GPL)
See file gpl-3.0.txt for licence info

Introduction

VICScript is a simple scripting language for the Commodore 64 or VIC-20 with 32K
expansion. A disk drive1 is also required. VICScript includes a minimal line editor which may
be used for editing program text (or editing short text files.) Alternatively files may be
prepared in an external editor and saved as plain PETSCII files.

VICScript is primarily intended to be a fun simple language for twiddling with hardware. The
only native types are 16 bit integers and arrays of 16 bit integers. A full range of C-style
operations for logical and bitwise manipulation of values is provided. Constants may be
expressed in decimal or hex and values may also be displayed in either base. VICScript also
aims to provide a basic set of structured programming primitives, such as named subroutines,
multi-line if / else / endif conditionals and a flexible while loop. The flavour of the
language may be described as a cross between C and BASIC.

The VICScript prototype implementation is written in the C programming language and
compiled using the cc65 compiler under Linux. The resulting code is rather large2 and slow
when compared to hand-tuned assembly code. As a future project I may rewrite some or all
of VICScript directly in assembly. Like BASIC, VICScript is an interpreted language.
However, unlike CBM BASIC, the current implementation of VICScript does not tokenize the
program text, which makes parsing slower than it otherwise would be. The upside of this
design decision is that the VICScript line editor may be used to edit any type of plain PETSCII
text file and conversely VICScript program text may be composed in any editor that saves
plain PETSCII text files.

1 VICScript has been tested on a real VIC-20 with an SD2IEC type drive and under VICE emulation. It should
work with a genuine Commodore 1541 or 1571 drive, but this has not been confirmed.

2 The code is around 15KB at the time of writing. It could probably be crammed into around half this amount if
hand written in assembly.

Page 1 of 17

VICScript User Manual v0.3

Warning: The VICScript language may change without notice! Future versions may or may
not be backwards compatible!

Quick Start

This section is intended to give a quick flavour of VICScript.

To start VICScript, load it from floppy disk and then start it executing using the following CBM
BASIC commands (for VIC-20):

LOAD “VS20.PRG”, 8
RUN

For Commodore 64, use the following BASIC commands:

LOAD “VS64.PRG”, 8
RUN

The VICScript sign on message will be shown confirming that VICScript is running. The
flashing cursor indicates that it is ready to accept input in immediate mode. VICScript
operates in mixed-case mode by default and commands are normally entered in lower case.

First, try a simple mathematical expression using integer values:

println 3 * (5 + 2)
21

Page 2 of 17

VICScript User Manual v0.3

Logical and bitwise operators are supported in the same manner as in C. For example a
logical and may be expressed:

println 1 && 0
0

or a left shift as follows:

println 1 << 4
16

Variables must be declared before use. This statement:

int foo ← 1

declares the 16 bit integer variable foo and initializes it to 1. The ← character is the special
CBM left-arrow character (which maps to underscore in ASCII.) Once declared, variables
may be freely assigned and used in expressions:

print foo * 100
foo ← foo + 1

The currently defined variables may be viewed using the following command:

vars

The command:

clear

will erase all defined variables and free the memory.

Our First VICScript Program

First ensure there are no program statements in the editor buffer:

new

Then enter the command to start inserting text into the empty buffer:

:i0

Page 3 of 17

VICScript User Manual v0.3

A little explanation is due. All editor commands begin with the colon character. The character
after the colon signifies the command (“insert” in this case) and the number is the line number
of the buffer to apply the editing command. Putting it all together, the command above tells
VICScript to begin inserting text into an empty buffer (at line zero.)

Once in insert mode, the VICScript prompt changes to a reverse video green ‘>’ character.
This serves to remind the programmer that she is editing program text, not typing VICScript
commands in immediate mode. Once in insert mode lines may be entered one after another.
To stop entering program lines, enter the period character ‘.’ by itself. Enter the following
program:

:i0 Editor command to insert text
‘Test program This is a comment
int i ← 0
for i ← 1 : 10
 prstr “i:“ prstr prints a string literal, no CR
 print i print prints an integer, no CR
 prstr “, sq:”
 println i * i println prints an integer, with CR
endfor
end
. Not part of the program, go back to

immediate mode

To check the program, you may list it as follows:

Page 4 of 17

VICScript User Manual v0.3

:l Lower case letter L

If there are errors, you may use the Commodore screen editor to modify the code, in a similar
way to CBM BASIC. Be sure to hit RETURN to accept any modified line. Other editing
commands include :d (delete line(s)), :a (append lines).

When editing or listing a program, line numbers are displayed in reverse video red before
each line of program text. Unlike BASIC, however, VICScript does not have line numbers.
The numbers shown are used by the line editor only in order to navigate the file. They are not
stored on disk with the file contents. This means that whenever you insert lines into the
middle of a program, the line numbers for the program text after the insertation point will
increase3.

Once you are satisfied, you may save the program text to disk using the write command as
follows:

:w”testprog”

Unit 8 is hard-coded. If the file already exists, it may be overwritten using the normal CBM
overwrite syntax:

:w”@:testprog”

Previously-saved programs may be loaded using the read command:

:r”testprog”

Finally, to run our example program:

run

I hope this quick start has given you a feel for what VICScript can do. The remainder of this
manual provides a detailed reference for all commands.

3 If you list the program and then insert some lines, is is a good idea to list the modified region using the :l
command before performing further edits to see the correct line numbers.

Page 5 of 17

VICScript User Manual v0.3

Line Editor

The line editor is very loosely modelled after UNIX line editors such as ed or ex. Because the
program is not tokenized the file that is stored on disk is a plain PETSCII 4 text file. The line
editor may be used for editing small files for any purpose – not just VICScript programs!

When entering text into the editor, the prompt changes to a green reverse video '>' character
to remind the user that she is inserting program text, not entering VICScript commands in
immediate mode.

Read
:r"filename"
Load a Vicscript program (or other PETSII file) from the SEQ file 'filename'. Unit #8 is hard-
coded.

Write
:w"filename"
Save a Vicscript program into the SEQ file 'filename'. Unit #8 is hard-coded. If you wish to
overwrite an existing file, prefix the filename with '@:' (note though that this is not safe with
original Commodore floppy drives). After saving, check the error light on your drive. If it
is not flashing, then the save was OK.

4 Ignoring the famous graphical characters provided in PETSCII, the main difference between PETSCII and
ASCII is that the upper and lower case characters are swapped. VICScript programs use lower case
characters, but if VICScript source is edited on another platform, the characters will appear as upper case.

Page 6 of 17

VICScript User Manual v0.3

List
:l[expr1[,expr2]] (Lower case letter L)
Shows the stored program lines from expr1 to expr2 inclusive. Line numbers are shown
alongside the listing. Unlike BASIC, these are *not* part of the code. These sequential
numbers are used for line editor commands only. If expr2 is not provided, lists to the end. If
expr1 is not provided lists the entire file.

Examples:
:l List whole file
:l10 List line 10 to end
:l10,20 List lines 10 to 20
:l10,10+15 List lines 10 to 25
:la,b List lines from value of variable a to variable b

Insert
:iexpr
Insert one or more lines of program text before line expr. Enter a period on its own to stop
inserting lines and return to immediate mode.

Examples:
:i0 Start inserting at beginning of buffer (or empty buffer)
:i99 Start inserting before line 99
:iline Start inserting before line number in variable line

Append
:aexpr
Append one or more lines of program text after line expr. Enter a period on its own to stop
appending lines and return to immediate mode.

Examples:
:a99 Start appending after line 99
:aline Start appending after line number in variable line

Delete
:dexpr1[,expr2]
Delete lines from expr1 to expr2. If expr2 is not provided deletes the single line referenced by
expr1.

Examples:
:d37 Delete line 37
:dbad Delete the line number in variable bad

Page 7 of 17

VICScript User Manual v0.3

Change
:cexprreplacementtext
Replace line number expr with the text that appears after the expression. This command is
not usually used directly, but is automatically invoked if a line begins with a digit. This allows
the CBM screen editor to be used the same way as in CBM BASIC by listing the code with
and then editing on screen. Be sure to hit Return to accept any modifications made in this
way.

Example:
:c33 prstrln “Fixed it!” Change line 33 using explicit ‘:c’ command

Page 8 of 17

VICScript User Manual v0.3

VICScript Language Reference

General

White space is ignored, so you can indent your source however you please.

Multiple statements are permitted on a line, separated by semicolons (;).

Comments are introduced with the single quote character (‘). The comment extends to the
end of the current program line.

Variables

Only 16 bit signed ints and one-dimensional arrays of 16 bit signed ints are currently
supported.

The first four characters of the name are significant, so variable and variety refer to the
same object.

Variables must be declared before use or an error is reported. They do not 'autovivify' as in
BASIC.

Integer variables are declared as follows:

int name ← expr

The expression on the right hand side is evaluated and used as an initializer for the new
integer variable.

Integer arrays are declared like this:

int name[expr1] ← expr2

The expression expr1 is evaluated and used as the size of the new array. Expression expr2
is evaluated and all elements of the new array are initialized to this value. VICScript array
indices are zero-based so that an array of size N has valid indices from 0 to N-1. Accesses
are bounds checked.

Examples:
int aa ← 42
int qwerty ← 23 * 2

Page 9 of 17

VICScript User Manual v0.3

int foobar[aa*2] ← 0

Once, declared variables may be used in any expression.

Examples:
aa ← qwerty << 2
i ← i + 1
foobar[idx] ← foobar[idx + 1]

Constants / Literals

Integer constants may be expressed in decimal, or in hexadecimal with a $ prefix.

String literals are enclosed in double quotes.

Examples:
int theanswer ← 42
int v ← $ff
prstrln “Hello world!”

Expressions

The same symbols are used as in C, where available in PETSCII. However the following
substitutions are performed:

VIC-20 Conventional C Notation

|

||

@ ^

. ~

While not all C operators are supported, the arithmetic, logical and bitwise operators are
provided. The asterix pointer dereference operator is implemented and may be used to read
(‘peek’) or write (‘poke’) memory. The operator precedence order is the same as that of C:

Level 11 (highest precedence):
 -
 +
 *

unary minus
unary plus
unary dereference operator

Page 10 of 17

VICScript User Manual v0.3

 !
 .

unary logical not
unary bitwise not (~ in C)

Level 10:
 ^
 *
 /
 %

exponent
multiply
divide
modulus

Level 9:
 +
 -

add
subtract

Level 8:
 <<
 >>

left shift
right shift

Level 7:
 >
 >=
 <
 <=

greater than
greater than or equal
less than
less than or equal

Level 6:
 ==
 !=

equality
inequality

Level 5:
 & bitwise AND

Level 4:
 @ Bitwise XOR (^ in C)

Level 3:
 # Bitwise OR (| in C)

Level 2:
 && Logical AND

Level 1:
 ## Logical OR

Examples:
(1 + 3) * 2^3 1 plus 2, times 2 to power of 3
(foo & $0f) >> 8 Bitwise and of foo and hex $0f, right shift 8 bits
(.a & b) Bitwise not a, then bitwise and with b
(a ## !b) Logical not of b, logical or with a

Page 11 of 17

VICScript User Manual v0.3

*(a + 10) Add 10 to value of a, return byte at that address (peek)

int addr ← $f009 Declare addr, initialize to hex $f009 (decimal 36879)
*addr ← 8 Poke value 8 into address 36879 (VIC register)
a ← *addr Obtain the value stored at address 36879, store in a

Accessing Memory

*expr1 ← expr2 ("POKE")
Evaluates expr1 and expr2. Stores the value of expr2 in the address corresponding to the
value of expr1.

val ← *expr1 ("PEEK")
The prefix * operator returns the byte value at the address given by expr1.

Program Control

run
Start running the stored program. A running program may be interrupted by
hitting the STOP key.

new
Clear stored program.

clear
Clears all variables.

vars
Shows all variables in a table.

free
Shows amount of free heap memory available for code and variables. See the section
‘Memory Layout’ for more details.

end
Terminates program execution. This statement is sometimes required to avoid having the
program terminate with an error by running into a subroutine definition.

quit
Terminates VICScript and returns to CBM BASIC.

Page 12 of 17

VICScript User Manual v0.3

Output

print expr
Evaluates integer expression expr and displays on screen in decimal.

println expr
Evaluates integer expression expr and displays on screen in decimal, with carriage return.

prhex expr
Evaluates integer expression expr and displays on screen in hex.

prhexln expr
Evaluates integer expression and displays on screen in hex, with carriage
return.

prstr "String literal"
Displays string literal on screen. Commodore control codes for colours, cursor movement etc.
are supported the same was as in CBM BASIC.

prstrln "String literal"
Displays string literal on screen, with carriage return. Commodore control codes for colours,
cursor movement etc. are supported the same was as in CBM BASIC.

Examples:
prstr "The answer is "; print (40 + 2); prstrln "..."
prstr "Addr:"; prhex addr; prstr " val:"; prhexln *addr
prstr "[CLEAR][BLU]"

Subroutines

Named subroutines may be defined and called. At present, subroutines do not accept
parameters or return results to the caller.

sub sublabel
Defines a subroutine with name “sublabel”. The label extends to the end of the line.

call sublabel
Calls a subroutine with name “sublabel”. The label extends to the end of the line.

Page 13 of 17

VICScript User Manual v0.3

return
Return from subroutine. The flow of execution returns to the line following the call
instruction.

Example:
call foo
prstrln "Done"
end

sub foo
prstrln "This is foo!"
return

Flow Control

VICScript provides the following flow control structures:

• Unconditional jump to named label (lbl).
• Multi-line if / else / endif conditional.
• for loops
• while loops.

Unconditional Jump

lbl label
Defines a jump target “label”. The label extends to the end of the line, so it is possible to
define labels with spaces if you so wish.

jump label
Unconditional jump to label. The label extends to the end of the line.

It is legal to jump out of loops. It is not legal to jump into loops or into or out of subroutines.
Undefined behaviour may result.

Conditionals

if expr
 ...
endif

Page 14 of 17

VICScript User Manual v0.3

Evaluates the expression expr. If true, continues executing the following statement(s). If
false, skips all statements up until the endif.

if expr
 ...
else
 ...
endif

Evaluates the expression expr. If true, continues executing the following statement(s) until
the else then skips to the endif. If false, skips to the else and executes the statements up
until the endif.

Example:
if i<20
 prstrln "less"
else
 prstrln "more"
 jump abort
endif
end

lbl abort
prstrln "Error"
end

Single line conditionals may also be composed as shown in the following example.

Example:
if i==1; prstrln "yes"; endif
if i==1; prstrln "yes"; else; prstrln "no"; endif

For Loop

for var ← expr1 : expr2
 [[stmt];]*
endfor

Initiates a for loop using loop control variable var (which must be defined.)

Page 15 of 17

VICScript User Manual v0.3

The loop control variable is initialized to expr1 and is incremented by one on each iteration.
The last loop execution occurs with var = expr2. The test is done at the end of the loop, not
the beginning, so for loops always execute at least once.

Single line for loops may be composed using semicolons as shown in the following example
(the for statement must begin the line):

Example:
for i ← 1 : 10; println i; endfor

While Loop

while expr
 [[stmt];]*
endw

Initiates a while loop. Evaluates expr, and if true then enters the loop. When endw is
encountered jumps back to top of loop and evaluates expr again. while loops are more
flexible than for loops but are less efficient in execution.

Single line while loops may be composed as shown in the following example (while must
begin the line):

Example:
while i < 10; println i; i ← i + 1; endw

Memory Layout

VICScript is designed to run on the VIC-20 with a 32KB RAM expansion. The VICScript
executable loads from address $1200 up, and occupies around 15KB of memory taking up
BLK0, 1, 2 and some of BLK 3. The remainder of BLK 3 (around 12KB) is made available for
the storage of VICScript program text. All of 8KB of BLK5 is used for storing the variables.

On Commodore 64, VICScript loads from address $0800 up and occupies around 15KB of
memory. 8KB from $A000 to $BFFF are allocated for storing variables (the same addresses
as in the VIC-20 version.) The remainder of memory from above the VICScript executable at
$4600 to just below $9FFF (around 21KB) is available for VICScript program text.

Page 16 of 17

VICScript User Manual v0.3

Example Program – Sieve of Eratosthenes

This is a simple algorithm for determining which integers are prime. The entire source code
fits on one VIC-20 screen:

And running it will give the prime numbers from 2 to nr2. In the example above, nr is set to
10, so the first 100 primes are computed. The limitation on how high nr may be set is
available memory for array A[] (two bytes per element.)

Page 17 of 17

